Barchi Library, 140 John Morgan Building
Farran Briggs
Department of Molecular and Systems Biology
Geisel School of Medicine
Dartmouth
Exploring vision and attention at the level of neuronal circuits
The overarching goal of my research is to understand how visual information is encoded by individual neurons and neuronal circuits. In my talk, I will describe two projects that showcase the different research programs that are ongoing in my lab. The goals of the first project are to understand the neuronal mechanisms of attention. We record from multiple neurons simultaneously spanning the visual thalamus and primary visual cortex in alert and behaving monkeys performing an attention-demanding task to understand how attention alters communication in neuronal circuits and whether attentional modulation of neuronal activity can be predicted by neuronal feature selectivity. The goals of the second project are to understand the functional contribution of corticogeniculate feedback to vision. Based on physiological and morphological evidence, we have demonstrated that corticogeniculate feedback is organized into parallel streams that align with the feedforward parallel processing streams. More recently, we have used optogenetics to manipulate the activity of corticogeniculate neurons selectively and we observe striking effects of corticogeniculate feedback on the timing and precision of thalamic responses to visual inputs. Together, my research highlights the importance of probing visual function and cognitive influences on vision at the granular level in order to gain a more mechanistic understanding of how visual information is encoded in the thalamus and cortex.